Skip to content

napari_ndev.widgets._workflow_container #

WorkflowContainer #

Bases: Container

Container class for managing the workflow functionality in napari-ndev.

Parameters:

  • viewer #

    (Viewer, default: None ) –

    The napari viewer instance.

Attributes:

  • viewer (Viewer) –

    The napari viewer instance.

  • _channel_names (list) –

    List of channel names extracted from the image data.

  • _img_dims (str) –

    The dimensions of the image data.

Widgets:

image_directory : FileEdit Widget for selecting the image directory. result_directory : FileEdit Widget for selecting the result directory. workflow_file : FileEdit Widget for selecting the workflow file. _keep_original_images : CheckBox Checkbox widget for specifying whether to keep original images. batch_button : PushButton Button widget for triggering the batch workflow. _progress_bar : ProgressBar Progress bar widget for displaying the progress of the workflow. _workflow_roots : Label Label widget for displaying the workflow roots.

Events:

image_directory.changed : Signal Signal emitted when the image directory is changed. workflow_file.changed : Signal Signal emitted when the workflow file is changed. batch_button.clicked : Signal Signal emitted when the batch button is clicked.

Source code in src/napari_ndev/widgets/_workflow_container.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
class WorkflowContainer(Container):
    """
    Container class for managing the workflow functionality in napari-ndev.

    Parameters
    ----------
    viewer : napari.viewer.Viewer
        The napari viewer instance.

    Attributes
    ----------
    viewer : napari.viewer.Viewer
        The napari viewer instance.
    _channel_names : list
        List of channel names extracted from the image data.
    _img_dims : str
        The dimensions of the image data.

    Widgets:
    --------
    image_directory : FileEdit
        Widget for selecting the image directory.
    result_directory : FileEdit
        Widget for selecting the result directory.
    workflow_file : FileEdit
        Widget for selecting the workflow file.
    _keep_original_images : CheckBox
        Checkbox widget for specifying whether to keep original images.
    batch_button : PushButton
        Button widget for triggering the batch workflow.
    _progress_bar : ProgressBar
        Progress bar widget for displaying the progress of the workflow.
    _workflow_roots : Label
        Label widget for displaying the workflow roots.

    Events:
    -------
    image_directory.changed : Signal
        Signal emitted when the image directory is changed.
    workflow_file.changed : Signal
        Signal emitted when the workflow file is changed.
    batch_button.clicked : Signal
        Signal emitted when the batch button is clicked.

    """

    def __init__(self, viewer: napari.viewer.Viewer = None):
        """
        Initialize the WorkflowContainer widget.

        Parameters
        ----------
        viewer : napari.viewer.Viewer, optional
            The napari viewer instance.

        """
        super().__init__()
        self._viewer = viewer if viewer is not None else None
        self._channel_names = []
        self._img_dims = ''
        self.image_files = []
        self.workflow = None
        self._root_scale = None

        self._init_widgets()
        self._init_viewer_container()
        self._init_batch_container()
        self._init_tasks_container()
        self._init_layout()
        self._connect_events()

    def _get_viewer_layers(self):
        """Get layers from the viewer."""
        if self._viewer is None:
            return []
        return list(self._viewer.layers)

    def _init_widgets(self):
        """Initialize non-Container widgets."""
        self.workflow_file = FileEdit(
            label='Workflow File',
            filter='*.yaml',
            tooltip='Select a workflow file to load',
        )
        self._workflow_roots = LineEdit(label='Workflow Roots:')
        self._progress_bar = ProgressBar(label='Progress:')

    def _init_viewer_container(self):
        """Initialize the viewer container tab widgets."""
        self.viewer_button = PushButton(text='Viewer Workflow')
        self._viewer_roots_container = Container(layout='vertical', label=None)
        self._viewer_roots_container.native.layout().addStretch() # this resets the additions to the top of the container (the name is confusing)
        self._viewer_container = Container(
            layout='vertical',
            widgets=[
                self.viewer_button,
                self._viewer_roots_container,
            ],
            label='Viewer',
            labels=None,
        )

    def _init_batch_container(self):
        """Initialize the batch container tab widgets."""
        # first create the informational widgets
        self.image_directory = FileEdit(label='Image Directory', mode='d')
        self.result_directory = FileEdit(label='Result Directory', mode='d')
        self._keep_original_images = CheckBox(
            label='Keep Original Images',
            value=False,
            tooltip='If checked, the original images will be '
            'concatenated with the results',
        )
        self.batch_button = PushButton(label='Batch Workflow')
        self._batch_info_container = Container(
            layout='vertical',
            widgets=[
                self.image_directory,
                self.result_directory,
                self._keep_original_images,
                self.batch_button,
            ],
        )

        # create the container where roots will later be added
        self._batch_roots_container = Container(layout='vertical', label=None)
        self._batch_roots_container.native.layout().addStretch() # this resets the additions to the top of the container (the name is confusing)

        # establish the layout of the batch container
        self._batch_container = Container(
            layout='vertical',
            widgets=[
                self._batch_info_container,
                self._batch_roots_container,
            ],
            label='Batch',
            labels=None,
        )


    def _init_tasks_container(self):
        """Initialize the tasks container."""
        self._tasks_select = Select(
            choices=[],
            nullable=False,
            allow_multiple=True,
        )
        self._tasks_container = Container(
            layout='vertical',
            widgets=[self._tasks_select],
            label='Tasks',
        )

    def _init_layout(self):
        """Initialize the layout of the widgets."""
        self.extend(
            [
                self.workflow_file,
                self._workflow_roots,
                self._progress_bar,
            ]
        )
        self._tabs = TabbedContainer(
            widgets=[
                self._viewer_container,
                self._batch_container,
                self._tasks_container,
            ],
            label=None,
            labels=None,
        )
        self.native.layout().addWidget(self._tabs.native) # add the tabbed container to the layout, native needed to keep viewer interaction
        self.native.layout().addStretch() # resets the layout to the top of the container

    def _connect_events(self):
        """Connect the events of the widgets to respective methods."""
        self.image_directory.changed.connect(self._get_image_info)
        self.workflow_file.changed.connect(self._get_workflow_info)
        self.batch_button.clicked.connect(self.batch_workflow_threaded)
        self.viewer_button.clicked.connect(self.viewer_workflow_threaded)

        if self._viewer is not None:
            self._viewer.layers.events.removed.connect(
                self._update_layer_choices
            )
            self._viewer.layers.events.inserted.connect(
                self._update_layer_choices
            )

    def _get_image_info(self):
        """Get channels and dims from first image in the directory."""
        self.image_dir, self.image_files = helpers.get_directory_and_files(
            self.image_directory.value,
        )
        img = nImage(self.image_files[0])

        self._channel_names = helpers.get_channel_names(img)

        for widget in self._batch_roots_container:
            widget.choices = self._channel_names

        self._squeezed_img_dims = helpers.get_squeezed_dim_order(img)
        return self._squeezed_img_dims

    def _update_layer_choices(self):
        """Update the choices of the layers for the viewer workflow."""
        for widget in self._viewer_roots_container:
            widget.choices = self._get_viewer_layers()
        return

    def _update_roots(self):
        """Get the roots from the workflow and update the ComboBox widgets."""
        self._batch_roots_container.clear()
        self._viewer_roots_container.clear()

        for idx, root in enumerate(self.workflow.roots()):
            short_root = helpers.elide_string(root, max_length=12)

            batch_root_combo = ComboBox(
                label=f'Root {idx}: {short_root}',
                choices=self._channel_names,
                nullable=True,
                value=None,
            )
            self._batch_roots_container.append(batch_root_combo)

            viewer_root_combo = ComboBox(
                label=f'Root {idx}: {short_root}',
                choices=self._get_viewer_layers(),
                nullable=True,
                value=None,
            )
            self._viewer_roots_container.append(viewer_root_combo)

        return

    def _update_task_choices(self, workflow):
        """Update the choices of the tasks with the workflow tasks."""
        self._tasks_select.choices = list(workflow._tasks.keys())
        self._tasks_select.value = workflow.leafs()

    def _get_workflow_info(self):
        """Load the workflow file and update the roots and leafs."""
        from napari_workflows._io_yaml_v1 import load_workflow

        self.workflow = load_workflow(self.workflow_file.value)
        self._workflow_roots.value = self.workflow.roots()
        self._update_roots()
        self._update_task_choices(self.workflow)
        return

    def _update_progress_bar(self, value):
        self._progress_bar.value = value
        return

    def batch_workflow(self):
        """Run the workflow on all images in the image directory."""
        import dask.array as da
        from bioio.writers import OmeTiffWriter
        from bioio_base import transforms

        result_dir = self.result_directory.value
        image_files = self.image_files
        workflow = self.workflow

        # get indexes of channel names, in case not all images have
        # the same channel names, the index should be in the same order
        root_list = [widget.value for widget in self._batch_roots_container]
        root_index_list = [self._channel_names.index(r) for r in root_list]

        # Setting up Logging File
        log_loc = result_dir / 'workflow.log.txt'
        logger, handler = helpers.setup_logger(log_loc)
        logger.info(
            """
            Image Directory: %s
            Result Directory: %s
            Workflow File: %s
            Roots: %s
            Tasks: %s
            """,
            self.image_directory.value,
            result_dir,
            self.workflow_file.value,
            root_list,
            self._tasks_select.value,
        )

        for idx_file, image_file in enumerate(image_files):
            logger.info('Processing %d: %s', idx_file + 1, image_file.name)
            img = nImage(image_file)

            root_stack = []
            # get image corresponding to each root, and set it to the workflow
            for idx, root_index in enumerate(root_index_list):
                if 'S' in img.dims.order:
                    root_img = img.get_image_data('TSZYX', S=root_index)
                else:
                    root_img = img.get_image_data('TCZYX', C=root_index)
                # stack the TCZYX images for later stacking with results
                root_stack.append(root_img)
                # squeeze the root image for workflow
                root_squeeze = np.squeeze(root_img)
                # set the root image to the index of the root in the workflow
                workflow.set(
                    name=workflow.roots()[idx], func_or_data=root_squeeze
                )

            task_names = self._tasks_select.value
            result = workflow.get(name=task_names)

            result_stack = np.asarray(
                result
            )  # cle.pull stacks the results on the 0th axis as "C"
            # transform result_stack to TCZYX
            result_stack = transforms.reshape_data(
                data=result_stack,
                given_dims='C' + self._squeezed_img_dims,
                return_dims='TCZYX',
            )

            if result_stack.dtype == np.int64:
                result_stack = result_stack.astype(np.int32)

            # <- should I add a check for the result_stack to be a dask array?
            # <- should this be done using dask or numpy?
            if self._keep_original_images.value:
                dask_images = da.concatenate(root_stack, axis=1)  # along "C"
                result_stack = da.concatenate(
                    [dask_images, result_stack], axis=1
                )
                result_names = root_list + task_names
            else:
                result_names = task_names

            OmeTiffWriter.save(
                data=result_stack,
                uri=result_dir / (image_file.stem + '.tiff'),
                dim_order='TCZYX',
                channel_names=result_names,
                image_name=image_file.stem,
                physical_pixel_sizes=img.physical_pixel_sizes,
            )

            yield idx_file + 1

        logger.removeHandler(handler)
        return

    def batch_workflow_threaded(self):
        """Run the batch workflow with threading and progress bar updates."""
        from napari.qt import create_worker

        self._progress_bar.label = f'Workflow on {len(self.image_files)} images'
        self._progress_bar.value = 0
        self._progress_bar.max = len(self.image_files)

        self._batch_worker = create_worker(self.batch_workflow)
        self._batch_worker.yielded.connect(self._update_progress_bar)
        self._batch_worker.start()
        return

    def viewer_workflow(self):
        """Run the workflow on the viewer layers."""
        workflow  = self.workflow

        root_layer_list = [widget.value for widget in self._viewer_roots_container]
        self._root_scale = root_layer_list[0].scale

        for root_idx, root_layer in enumerate(root_layer_list):
            workflow.set(
                name=workflow.roots()[root_idx],
                func_or_data=root_layer.data,
            )

        for task_idx, task in enumerate(self._tasks_select.value):
            result = workflow.get(name=task)
            yield task_idx, task, result

        return

    def _viewer_workflow_yielded(self, value):
        task_idx, task, result = value
        # TODO: estimate layer type and call proper add function (could be label)
        self._viewer.add_image(
            result,
            name=task,
            blending='additive',
            scale=self._root_scale if self._root_scale is not None else None
        )
        self._progress_bar.value = task_idx + 1
        return

    def viewer_workflow_threaded(self):
        """Run the viewer workflow with threading and progress bar updates."""
        from napari.qt import create_worker

        self._progress_bar.label = 'Workflow on Viewer Layers'
        self._progress_bar.value = 0
        self._progress_bar.max = len(self._tasks_select.value)

        self._viewer_worker = create_worker(self.viewer_workflow)
        self._viewer_worker.yielded.connect(self._viewer_workflow_yielded)
        self._viewer_worker.start()
        return

__init__ #

__init__(viewer=None)

Initialize the WorkflowContainer widget.

Parameters:

  • viewer #

    (Viewer, default: None ) –

    The napari viewer instance.

Source code in src/napari_ndev/widgets/_workflow_container.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def __init__(self, viewer: napari.viewer.Viewer = None):
    """
    Initialize the WorkflowContainer widget.

    Parameters
    ----------
    viewer : napari.viewer.Viewer, optional
        The napari viewer instance.

    """
    super().__init__()
    self._viewer = viewer if viewer is not None else None
    self._channel_names = []
    self._img_dims = ''
    self.image_files = []
    self.workflow = None
    self._root_scale = None

    self._init_widgets()
    self._init_viewer_container()
    self._init_batch_container()
    self._init_tasks_container()
    self._init_layout()
    self._connect_events()

batch_workflow #

batch_workflow()

Run the workflow on all images in the image directory.

Source code in src/napari_ndev/widgets/_workflow_container.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def batch_workflow(self):
    """Run the workflow on all images in the image directory."""
    import dask.array as da
    from bioio.writers import OmeTiffWriter
    from bioio_base import transforms

    result_dir = self.result_directory.value
    image_files = self.image_files
    workflow = self.workflow

    # get indexes of channel names, in case not all images have
    # the same channel names, the index should be in the same order
    root_list = [widget.value for widget in self._batch_roots_container]
    root_index_list = [self._channel_names.index(r) for r in root_list]

    # Setting up Logging File
    log_loc = result_dir / 'workflow.log.txt'
    logger, handler = helpers.setup_logger(log_loc)
    logger.info(
        """
        Image Directory: %s
        Result Directory: %s
        Workflow File: %s
        Roots: %s
        Tasks: %s
        """,
        self.image_directory.value,
        result_dir,
        self.workflow_file.value,
        root_list,
        self._tasks_select.value,
    )

    for idx_file, image_file in enumerate(image_files):
        logger.info('Processing %d: %s', idx_file + 1, image_file.name)
        img = nImage(image_file)

        root_stack = []
        # get image corresponding to each root, and set it to the workflow
        for idx, root_index in enumerate(root_index_list):
            if 'S' in img.dims.order:
                root_img = img.get_image_data('TSZYX', S=root_index)
            else:
                root_img = img.get_image_data('TCZYX', C=root_index)
            # stack the TCZYX images for later stacking with results
            root_stack.append(root_img)
            # squeeze the root image for workflow
            root_squeeze = np.squeeze(root_img)
            # set the root image to the index of the root in the workflow
            workflow.set(
                name=workflow.roots()[idx], func_or_data=root_squeeze
            )

        task_names = self._tasks_select.value
        result = workflow.get(name=task_names)

        result_stack = np.asarray(
            result
        )  # cle.pull stacks the results on the 0th axis as "C"
        # transform result_stack to TCZYX
        result_stack = transforms.reshape_data(
            data=result_stack,
            given_dims='C' + self._squeezed_img_dims,
            return_dims='TCZYX',
        )

        if result_stack.dtype == np.int64:
            result_stack = result_stack.astype(np.int32)

        # <- should I add a check for the result_stack to be a dask array?
        # <- should this be done using dask or numpy?
        if self._keep_original_images.value:
            dask_images = da.concatenate(root_stack, axis=1)  # along "C"
            result_stack = da.concatenate(
                [dask_images, result_stack], axis=1
            )
            result_names = root_list + task_names
        else:
            result_names = task_names

        OmeTiffWriter.save(
            data=result_stack,
            uri=result_dir / (image_file.stem + '.tiff'),
            dim_order='TCZYX',
            channel_names=result_names,
            image_name=image_file.stem,
            physical_pixel_sizes=img.physical_pixel_sizes,
        )

        yield idx_file + 1

    logger.removeHandler(handler)
    return

batch_workflow_threaded #

batch_workflow_threaded()

Run the batch workflow with threading and progress bar updates.

Source code in src/napari_ndev/widgets/_workflow_container.py
373
374
375
376
377
378
379
380
381
382
383
384
def batch_workflow_threaded(self):
    """Run the batch workflow with threading and progress bar updates."""
    from napari.qt import create_worker

    self._progress_bar.label = f'Workflow on {len(self.image_files)} images'
    self._progress_bar.value = 0
    self._progress_bar.max = len(self.image_files)

    self._batch_worker = create_worker(self.batch_workflow)
    self._batch_worker.yielded.connect(self._update_progress_bar)
    self._batch_worker.start()
    return

viewer_workflow #

viewer_workflow()

Run the workflow on the viewer layers.

Source code in src/napari_ndev/widgets/_workflow_container.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def viewer_workflow(self):
    """Run the workflow on the viewer layers."""
    workflow  = self.workflow

    root_layer_list = [widget.value for widget in self._viewer_roots_container]
    self._root_scale = root_layer_list[0].scale

    for root_idx, root_layer in enumerate(root_layer_list):
        workflow.set(
            name=workflow.roots()[root_idx],
            func_or_data=root_layer.data,
        )

    for task_idx, task in enumerate(self._tasks_select.value):
        result = workflow.get(name=task)
        yield task_idx, task, result

    return

viewer_workflow_threaded #

viewer_workflow_threaded()

Run the viewer workflow with threading and progress bar updates.

Source code in src/napari_ndev/widgets/_workflow_container.py
417
418
419
420
421
422
423
424
425
426
427
428
def viewer_workflow_threaded(self):
    """Run the viewer workflow with threading and progress bar updates."""
    from napari.qt import create_worker

    self._progress_bar.label = 'Workflow on Viewer Layers'
    self._progress_bar.value = 0
    self._progress_bar.max = len(self._tasks_select.value)

    self._viewer_worker = create_worker(self.viewer_workflow)
    self._viewer_worker.yielded.connect(self._viewer_workflow_yielded)
    self._viewer_worker.start()
    return