Skip to content

napari_ndev.widgets._utilities_container #

UtilitiesContainer #

Bases: ScrollableContainer

A widget to work with images and labels in the napari viewer.

Parameters:

  • viewer #

    (Viewer, default: None ) –

    The napari viewer instance.

Attributes:

  • _viewer (Viewer) –

    The napari viewer instance.

  • _image_save_dims (str or None) –

    The dimension order for saving images.

  • _label_save_dims (str or None) –

    The dimension order for saving labels.

  • _p_sizes (PhysicalPixelSizes) –

    The physical pixel sizes for the image.

  • _files (FileEdit) –

    Widget for selecting file(s).

  • _open_image_button (PushButton) –

    Button for opening images.

  • _save_directory (FileEdit) –

    Widget for selecting the save directory.

  • _save_name (LineEdit) –

    Widget for entering the file save name.

  • _metadata_from_selected_layer (PushButton) –

    Button for updating metadata from the selected layer.

  • _dim_order (LineEdit) –

    Widget for entering the dimension order.

  • _channel_names (LineEdit) –

    Widget for entering the channel names.

  • _physical_pixel_sizes_z (FloatSpinBox) –

    Widget for entering the Z pixel size in micrometers.

  • _physical_pixel_sizes_y (FloatSpinBox) –

    Widget for entering the Y pixel size in micrometers.

  • _physical_pixel_sizes_x (FloatSpinBox) –

    Widget for entering the X pixel size in micrometers.

  • _image_layer (Select) –

    Widget for selecting the image layer.

  • _concatenate_image_files (CheckBox) –

    Checkbox for concatenating image files.

  • _concatenate_image_layers (CheckBox) –

    Checkbox for concatenating image layers.

  • _save_image_button (PushButton) –

    Button for saving images.

  • _labels_layer (Widget) –

    Widget for working with labels layer.

  • _save_labels_button (PushButton) –

    Button for saving labels.

  • _shapes_layer (Widget) –

    Widget for working with shapes layer.

  • _save_shapes_button (PushButton) –

    Button for saving shapes as labels.

  • _results (TextEdit) –

    Widget for displaying information.

Methods:

  • _update_metadata

    Update the metadata based on the given image.

  • update_metadata_from_file

    Update the metadata from the selected file.

  • update_metadata_from_layer

    Update the metadata from the selected layer.

  • open_images

    Open the selected images in the napari viewer.

  • concatenate_images

    Concatenate the image data based on the selected options.

  • p_sizes

    Get the physical pixel sizes.

  • _get_save_loc

    Get the save location based on the parent directory.

  • _common_save_logic

    Common logic for saving data as OME-TIFF.

  • save_ome_tiff

    Save the concatenated image data as OME-TIFF.

  • save_labels

    Save the labels data.

  • save_shapes_as_labels

    Save the shapes data as labels.

Source code in src/napari_ndev/widgets/_utilities_container.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
class UtilitiesContainer(ScrollableContainer):
    """
    A widget to work with images and labels in the napari viewer.

    Parameters
    ----------
    viewer: napari.viewer.Viewer, optional
        The napari viewer instance.

    Attributes
    ----------
    _viewer: napari.viewer.Viewer
        The napari viewer instance.
    _image_save_dims: str or None
        The dimension order for saving images.
    _label_save_dims: str or None
        The dimension order for saving labels.
    _p_sizes: PhysicalPixelSizes
        The physical pixel sizes for the image.
    _files: FileEdit
        Widget for selecting file(s).
    _open_image_button: PushButton
        Button for opening images.
    _save_directory: FileEdit
        Widget for selecting the save directory.
    _save_name: LineEdit
        Widget for entering the file save name.
    _metadata_from_selected_layer: PushButton
        Button for updating metadata from the selected layer.
    _dim_order: LineEdit
        Widget for entering the dimension order.
    _channel_names: LineEdit
        Widget for entering the channel names.
    _physical_pixel_sizes_z: FloatSpinBox
        Widget for entering the Z pixel size in micrometers.
    _physical_pixel_sizes_y: FloatSpinBox
        Widget for entering the Y pixel size in micrometers.
    _physical_pixel_sizes_x: FloatSpinBox
        Widget for entering the X pixel size in micrometers.
    _image_layer: Select
        Widget for selecting the image layer.
    _concatenate_image_files: CheckBox
        Checkbox for concatenating image files.
    _concatenate_image_layers: CheckBox
        Checkbox for concatenating image layers.
    _save_image_button: PushButton
        Button for saving images.
    _labels_layer: Widget
        Widget for working with labels layer.
    _save_labels_button: PushButton
        Button for saving labels.
    _shapes_layer: Widget
        Widget for working with shapes layer.
    _save_shapes_button: PushButton
        Button for saving shapes as labels.
    _results: TextEdit
        Widget for displaying information.

    Methods
    -------
    _update_metadata(img)
        Update the metadata based on the given image.
    update_metadata_from_file()
        Update the metadata from the selected file.
    update_metadata_from_layer()
        Update the metadata from the selected layer.
    open_images()
        Open the selected images in the napari viewer.
    concatenate_images(concatenate_files, files, concatenate_layers, layers)
        Concatenate the image data based on the selected options.
    p_sizes()
        Get the physical pixel sizes.
    _get_save_loc(parent)
        Get the save location based on the parent directory.
    _common_save_logic(data, uri, dim_order, channel_names, layer)
        Common logic for saving data as OME-TIFF.
    save_ome_tiff()
        Save the concatenated image data as OME-TIFF.
    save_labels()
        Save the labels data.
    save_shapes_as_labels()
        Save the shapes data as labels.

    """

    def __init__(self, viewer: napari.viewer.Viewer = None):
        """
        Initialize the UtilitiesContainer widget.

        Parameters
        ----------
        viewer : napari.viewer.Viewer, optional
            The napari viewer instance.

        """
        super().__init__(labels=False)

        self.min_width = 500 # TODO: remove this hardcoded value
        self._viewer = viewer if viewer is not None else None
        self._squeezed_dims = None

        self._init_widgets()
        self._init_save_name_container()
        self._init_file_options_container()
        self._init_open_image_container()
        self._init_metadata_container()
        self._init_concatenate_files_container()
        self._init_save_layers_container()
        self._init_scene_container()
        # self._init_figure_options_container() # TODO: add figure saving
        self._init_layout()
        self._connect_events()

    def _init_layout(self):
        """Initialize the layout of the widget."""
        self.extend(
            [
                self._save_directory,
                self._save_name_container,
                self._files,
                self._open_image_container,
                self._file_options_container,
                self._metadata_container,
                self._concatenate_files_container,
                self._scene_container,
                # self._figure_options_container,
                self._save_layers_container,
                self._results,
            ]
        )

    def _init_widgets(self):
        """Initialize widgets."""
        self._save_directory = FileEdit(
            mode='d',
            tooltip='Directory where images will be saved.',
        )
        self._files = FileEdit(
            mode='rm',
            tooltip='Select file(s) to load.',
        )

        self._results = TextEdit(label='Info')

    def _init_save_name_container(self):
        """Initialize the save name container."""
        self._save_name_container = Container(layout='horizontal')
        self._save_name = LineEdit(
            label='Save Name',
            tooltip='Name of the saved file. '
            'Proper extension will be added when saved.',
        )
        self._append_scene_button = PushButton(
            label='Append Scene to Name',
        )
        self._save_name_container.extend([
            self._save_name,
            self._append_scene_button
        ])


    def _init_file_options_container(self):
        """Initialize the file options collapsible container."""
        self._file_options_container = CollapsibleContainer(
            layout='vertical',
            text='File Options',
            collapsed=True,
        )
        self._update_scale = CheckBox(
            value=True,
            label='Update Scale on File Select',
            tooltip='Update the scale when files are selected.',
        )
        self._update_channel_names = CheckBox(
            value=True,
            label='Update Channel Names on File Select',
            tooltip='Update the channel names when files are selected.',
        )
        self._save_directory_prefix = LineEdit(
            label='Save Directory Prefix',
            tooltip='Prefix for the save directories.',
        )

        self._file_options_container.extend([
            self._update_scale,
            self._update_channel_names,
            self._save_directory_prefix,
        ])

    def _init_open_image_container(self):
        """Initialize the open image container."""
        self._open_image_container = Container(layout='horizontal')
        self._open_image_button = PushButton(label='Open File(s)')
        self._select_next_image_button = PushButton(
            label='Select Next',
            tooltip='Select the next file(s) in the directory. \n'
            'Note that the files are sorted alphabetically and numerically.'
        )
        self._open_image_container.append(self._open_image_button)
        self._open_image_container.append(self._select_next_image_button)

    def _init_concatenate_files_container(self):
        self._concatenate_files_container = Container(
            layout='horizontal',
        )
        self._concatenate_files_button = PushButton(label='Concat. Files')
        self._concatenate_batch_button = PushButton(
            label='Batch Concat.',
            tooltip='Concatenate files in the selected directory by iterating'
            ' over the remaing files in the directory based on the number of'
            ' files selected. The files are sorted '
            'alphabetically and numerically, which may not be consistent '
            'with your file viewer. But, opening related consecutive files '
            'should work as expected.',
        )
        self._concatenate_files_container.extend([
            self._concatenate_files_button,
            self._concatenate_batch_button,
        ])


    def _init_metadata_container(self):
        self._metadata_container = CollapsibleContainer(
            layout='vertical',  # label='Update Metadata from',
            text='Metadata',
            collapsed=True,
        )
        self._layer_metadata_update = PushButton(
            label='Update Metadata from Selected Layer'
        )

        self._dim_order = Label(
            label='Dimension Order: ',
            tooltip='Sanity check for available dimensions.',
        )
        self._num_scenes = Label(
            label='Number of Scenes: ',
        )

        self._channel_names = LineEdit(
            label='Channel Name(s)',
            tooltip='Enter channel names as a list. If left blank or the '
            'channel names are not the proper length, then default channel '
            'names will be used.',
        )

        self._scale_tuple = TupleEdit(
            label='Scale, ZYX',
            tooltip='Pixel size, usually in μm',
            value=(0.0000, 1.0000, 1.0000),
            options={'step': 0.0001},
        )
        self._scale_layers_button = PushButton(
            label='Scale Layer(s)',
            tooltip='Scale the selected layer(s) based on the given scale.',
        )


        self._metadata_container.extend([
            # self._file_metadata_update,
            self._layer_metadata_update,
            self._dim_order,
            self._num_scenes,
            self._channel_names,
            self._scale_tuple,
            self._scale_layers_button,
        ])

    def _init_scene_container(self):
        """Initialize the scene container, allowing scene saving."""
        self._scene_container = Container(
            layout='horizontal',
            tooltip='Must be in list index format. Ex: [0, 1, 2] or [5:10]',
        )
        self._scenes_to_extract = LineEdit(
            # label="Scenes to Extract",
            tooltip='Enter the scenes to extract as a list. If left blank '
            'then all scenes will be extracted.',
        )
        self._extract_scenes = PushButton(
            label='Extract and Save Scenes',
            tooltip='Extract scenes from a single selected file.',
        )
        self._scene_container.append(self._scenes_to_extract)
        self._scene_container.append(self._extract_scenes)

    def _init_save_layers_container(self):
        """Initialize the container to save images, labels, and shapes."""
        self._save_layers_container = Container(
            layout='horizontal',
            label='Save Selected Layers',
        )
        self._save_layers_button = PushButton(
            label='Save Selected Layers',
            tooltip='Concatenate and save all selected layers as OME-TIFF.'
            'Layers will save to corresponding directories based on the layer'
            'type, e.g. Images, Labels, ShapesAsLabels. Shapes are saved as'
            'labels based on the selected image layer dimensions. If multiple'
            'layer types are selected, then the image will save to Layers.',
        )
        # self._export_figure_button = PushButton(
        #     label='Export Figure',
        #     tooltip='Export the current canvas figure to the save directory. '
        #     'Saves image as a PNG to Figures directory.',
        # )
        self._save_layers_container.extend([
            self._save_layers_button,
            # self._export_figure_button,
        ])

    def _init_figure_options_container(self):
        """Initialize the container for figure options."""
        self._figure_options_container = CollapsibleContainer(
            layout='vertical',
            text='Figure Options',
            collapsed=True,
        )
        self._figure_scale_factor = SpinBox(
            label='Scale Factor',
            min=0,
            step=1,
            value=1,
        )
        self._use_current_canvas_size = CheckBox(
            label='Use current canvas dimensions',
            value=True
        )
        self._current_canvas_dims = Label(label='Canvas Dimensions: ')
        self._canvas_size = TupleEdit(
            label='Canvas Size',
            value=(0, 0),
        )
        # use this to automatically change the camera parameters
        self._camera_zoom = SpinBox(
            label='Camera Zoom',
            min=0,
            step=0.1,
            value=self._viewer.camera.zoom,
        )
        self._camera_angle = TupleEdit(
            label='Camera Angle',
            value=(0, 0, 90),
            options={'step': 1},
        )
        self._figure_options_container.extend([
            self._figure_scale_factor,
            self._use_current_canvas_size,
            self._current_canvas_dims,
            self._canvas_size,
            self._camera_zoom,
            self._camera_angle,
        ])

    def _connect_events(self):
        """Connect the events of the widgets to respective methods."""
        self._files.changed.connect(self.update_metadata_on_file_select)
        self._append_scene_button.clicked.connect(self.append_scene_to_name)
        self._open_image_button.clicked.connect(self.open_images)
        self._select_next_image_button.clicked.connect(self.select_next_images)

        self._layer_metadata_update.clicked.connect(
            self.update_metadata_from_layer
        )
        self._scale_layers_button.clicked.connect(self.rescale_by)

        self._concatenate_files_button.clicked.connect(self.save_files_as_ome_tiff)
        self._concatenate_batch_button.clicked.connect(self.batch_concatenate_files)
        self._extract_scenes.clicked.connect(self.save_scenes_ome_tiff)
        self._save_layers_button.clicked.connect(self.save_layers_as_ome_tiff)
        # self._export_figure_button.clicked.connect(self.export_figure)
        self._results._on_value_change()

    @property
    def p_sizes(self):
        """
        Get the physical pixel sizes.

        Returns
        -------
        PhysicalPixelSizes
            The physical pixel sizes.

        """
        from bioio_base.types import PhysicalPixelSizes

        return PhysicalPixelSizes(
            self._scale_tuple.value[0],
            self._scale_tuple.value[1],
            self._scale_tuple.value[2],
        )

    # Converted
    def _update_metadata_from_Image(
        self,
        img: BioImage,
        update_channel_names: bool = True,
        update_scale: bool = True,
    ):
        """
        Update the metadata based on the given image.

        Parameters
        ----------
        img : BioImage
            The image from which to update the metadata.
        update_channel_names : bool, optional
            Update the channel names, by default True.
        update_scale : bool, optional
            Update the scale, by default True.

        """
        self._dim_order.value = img.dims.order
        self._num_scenes.value = str(len(img.scenes))

        self._squeezed_dims = helpers.get_squeezed_dim_order(img)

        if update_channel_names:
            self._channel_names.value = helpers.get_channel_names(img)
        if update_scale:
            self._scale_tuple.value = (
                img.physical_pixel_sizes.Z or 1,
                img.physical_pixel_sizes.Y or 1,
                img.physical_pixel_sizes.X or 1,
            )

    # Converted
    def update_metadata_on_file_select(self):
        """Update self._save_name.value and metadata if selected."""
        # TODO: get true stem of file, in case .ome.tiff
        self._save_name.value = str(self._files.value[0].stem)
        img = nImage(self._files.value[0])

        self._update_metadata_from_Image(
            img,
            update_channel_names=self._update_channel_names.value,
            update_scale=self._update_scale.value,
        )

    # Added
    def append_scene_to_name(self):
        """Append the scene to the save name."""
        if self._viewer.layers.selection.active is not None:
            try:
                img = self._viewer.layers.selection.active.metadata['bioimage']
                # remove bad characters from scene name
                scene = re.sub(r'[^\w\s]', '-', img.current_scene)
                self._save_name.value = f'{self._save_name.value}_{scene}'
            except AttributeError:
                self._results.value = (
                    'Tried to append scene to name, but layer not opened with'
                    ' neuralDev reader.'
                )
        else:
            self._results.value = (
                'Tried to append scene to name, but no layer selected.'
                ' So the first scene from the first file will be appended.'
            )
            img = nImage(self._files.value[0])
            scene = re.sub(r'[^\w\s]', '-', img.current_scene)
            self._save_name.value = f'{self._save_name.value}_{scene}'

    # Converted
    def update_metadata_from_layer(self):
        """
        Update metadata from the selected layer.

        Expects images to be opened with napari-ndev reader.

        Note:
        ----
        This should also support napari-bioio in the future, when released.

        """
        selected_layer = self._viewer.layers.selection.active
        try:
            img = selected_layer.metadata['bioimage']
            self._update_metadata_from_Image(img)

        except AttributeError:
            self._results.value = (
                'Tried to update metadata, but no layer selected.'
                f'\nAt {time.strftime("%H:%M:%S")}'
            )
        except KeyError:
            scale = selected_layer.scale
            self._scale_tuple.value = (
                scale[-3] if len(scale) >= 3 else 1,
                scale[-2],
                scale[-1],
            )
            self._results.value = (
                'Tried to update metadata, but could only update scale'
                ' because layer not opened with neuralDev reader.'
                f'\nAt {time.strftime("%H:%M:%S")}'
            )

    # Converted
    def open_images(self):
        """Open the selected images in the napari viewer with napari-ndev."""
        self._viewer.open(self._files.value, plugin='napari-ndev')

    @staticmethod
    def _natural_sort_key(s):
        return [
            int(text) if text.isdigit() else text.lower()
            for text in re.split(r'(\d+)', s)
        ]

    # Converted
    def select_next_images(self):
        from natsort import os_sorted
        """Open the next set of images in the directyory."""
        num_files = self._files.value.__len__()

        # get the parent directory of the first file
        first_file = self._files.value[0]
        parent_dir = first_file.parent

        # get the list of files in the parent directory
        files = list(parent_dir.glob(f'*{first_file.suffix}'))
        # sort the files naturally (case-insensitive and numbers in order)
        # like would be scene in windows file explorer default sorting
        # https://pypi.org/project/natsort/#sort-paths-like-my-file-browser-e-g-windows-explorer-on-windows

        files = os_sorted(files)

        # get the index of the first file in the list and then the next files
        idx = files.index(first_file)
        next_files = files[idx + num_files : idx + num_files + num_files]

        # if there are no more files, then return
        if not next_files:
            self._results.value = (
                'No more file sets to select.'
            )
            return
        # set the nwe save names, and update the file value
        img = nImage(next_files[0])

        self._save_name.value = helpers.create_id_string(img, next_files[0].stem)
        self._files.value = next_files

        self.update_metadata_on_file_select()

    # Converted
    def rescale_by(self):
        """Rescale the selected layers based on the given scale."""
        layers = self._viewer.layers.selection
        scale_tup = self._scale_tuple.value

        for layer in layers:
            scale_len = len(layer.scale)
            # get the scale_tup from the back of the tuple first, in case dims
            # are missing in the new layer
            layer.scale = scale_tup[-scale_len:]

    def concatenate_files(
        self,
        files: str | Path | list[str | Path],
    ) -> np.ndarray:
        """
        Concatenate the image data from the selected files.

        Removes "empty" channels, which are channels with no values above 0.
        This is present in some microscope formats where it will image in RGB,
        and then leave empty channels not represented by the color channels.

        Does not currently handle scenes.

        Parameters
        ----------
        files : str or Path or list of str or Path
            The file(s) to concatenate.

        Returns
        -------
        numpy.ndarray
            The concatenated image data.

        """
        array_list = []

        for file in files:
            img = nImage(file)

            if 'S' in img.dims.order:
                img_data = img.get_image_data('TSZYX')
            else:
                img_data = img.data

            # iterate over all channels and only keep if not blank
            for idx in range(img_data.shape[1]):
                array = img_data[:, [idx], :, :, :]
                if array.max() > 0:
                    array_list.append(array)
        return np.concatenate(array_list, axis=1)

    def concatenate_layers(
        self,
        layers: Layer | list[Layer],
    ) -> np.ndarray:
        """
        Concatenate the image data from the selected layers.

        Adapts all layers to 5D arrays for compatibility with image dims.
        If the layer is a shapes layer, it will look for a corresponding image
        layer to get the dimensions for the shapes layer.

        Parameters
        ----------
        layers : napari.layers.Image or list of napari.layers.Image
            The selected image layers.

        Returns
        -------
        numpy.ndarray
            The concatenated image data.

        """
        if any(isinstance(layer, ShapesLayer) for layer in layers):
            label_dim = self._get_dims_for_shape_layer(layers)

        array_list = []

        for layer in layers:
            if isinstance(layer, ShapesLayer):
                layer_data = layer.to_labels(labels_shape=label_dim)
                layer_data = layer_data.astype(np.int16)
            else:
                layer_data = layer.data

            # convert to 5D array for compatability with image dims
            while len(layer_data.shape) < 5:
                layer_data = np.expand_dims(layer_data, axis=0)
            array_list.append(layer_data)

        return np.concatenate(array_list, axis=1)

    def _get_dims_for_shape_layer(self, layers) -> tuple[int]:
        # TODO: Fix this not getting the first instance of the image layer
        # get first instance of a napari.layers.Image or napari.layers.Labels
        dim_layer = next(
                (layer for layer in layers if isinstance(layer, (ImageLayer, LabelsLayer))),
                None,
            )
        # if none of these layers is selected, get it from the first instance in the viewer
        if dim_layer is None:
            dim_layer = next(
                    (layer for layer in self._viewer.layers if isinstance(layer, (ImageLayer, LabelsLayer))),
                    None,
                )
        if dim_layer is None:
            raise ValueError('No image or labels present to convert shapes layer.')
        label_dim = dim_layer.data.shape
            # drop last axis if represents RGB image
        label_dim = label_dim[:-1] if label_dim[-1] == 3 else label_dim
        return label_dim

    def _get_save_loc(
        self, root_dir: Path, parent: str, file_name: str
    ) -> Path:
        """
        Get the save location based on the parent directory.

        Parameters
        ----------
        root_dir : Path
            The root directory.
        parent : str
            The parent directory. eg. 'Image', 'Labels', 'ShapesAsLabels'
        file_name : str
            The file name.

        Returns
        -------
        Path
            The save location. root_dir / parent / file_name

        """
        save_directory = root_dir / parent
        save_directory.mkdir(parents=False, exist_ok=True)
        return save_directory / file_name

    def _common_save_logic(
        self,
        data: np.ndarray,
        uri: Path,
        dim_order: str,
        channel_names: list[str],
        image_name: str | list[str | None] | None,
        result_str: str,
    ) -> None:
        """
        Save data as OME-TIFF with bioio based on common logic.

        Converts labels to np.int32 if np.int64 is detected, due to bioio
        not supporting np.int64 labels, even though napari and other libraries
        generate np.int64 labels.

        Parameters
        ----------
        data : np.ndarray
            The data to save.
        uri : Path
            The URI to save the data to.
        dim_order : str
            The dimension order.
        channel_names : list[str]
            The channel names saved to OME metadata
        image_name : str | list[str | None] | None
            The image name saved to OME metadata
        result_str : str
            The string used for the result widget.

        """
        # TODO: add image_name to save method
        from bioio.writers import OmeTiffWriter

        # BioImage does not allow saving labels as np.int64
        # napari generates labels differently depending on the OS
        # so we need to convert to np.int32 in case np.int64 generated
        # see: https://github.com/napari/napari/issues/5545
        # This is a failsafe
        if data.dtype == np.int64:
            data = data.astype(np.int32)

        try:
            OmeTiffWriter.save(
                data=data,
                uri=uri,
                dim_order=dim_order or None,
                channel_names=channel_names or None,
                image_name=image_name or None,
                physical_pixel_sizes=self.p_sizes,
            )
            self._results.value = f'Saved {result_str}: ' + str(
                self._save_name.value
            ) + f'\nAt {time.strftime("%H:%M:%S")}'
        # if ValueError is raised, save with default channel names
        except ValueError as e:
            OmeTiffWriter.save(
                data=data,
                uri=uri,
                dim_order=dim_order,
                image_name=image_name or None,
                physical_pixel_sizes=self.p_sizes,
            )
            self._results.value = (
                'ValueError: '
                + str(e)
                + '\nSo, saved with default channel names: \n'
                + str(self._save_name.value)
                + f'\nAt {time.strftime("%H:%M:%S")}'
            )
        return

    def _determine_save_directory(self, save_dir: str | None = None) -> str:
        if self._save_directory_prefix.value != '':
            save_dir = f'{self._save_directory_prefix.value}_{save_dir}'
        else:
            save_dir = f'{save_dir}'
        return save_dir

    def save_files_as_ome_tiff(self) -> np.ndarray:
        """Save the selected files as OME-TIFF using BioImage."""
        img_data = self.concatenate_files(self._files.value)
        save_dir = self._determine_save_directory('ConcatenatedImages')
        img_save_name = f'{self._save_name.value}.tiff'
        img_save_loc = self._get_save_loc(
            self._save_directory.value,
            save_dir,
            img_save_name,
        )

        cnames = self._channel_names.value
        channel_names = ast.literal_eval(cnames) if cnames else None

        self._common_save_logic(
            data=img_data,
            uri=img_save_loc,
            dim_order='TCZYX',
            channel_names=channel_names,
            image_name=self._save_name.value,
            result_str='Concatenated Image',
        )

        return img_data

    def batch_concatenate_files(self) -> None:
        """
        Concatenate files in the selected directory.

        Save the concatenated files as OME-TIFF, then select the next set of
        files in the directory to be concatenated. This is done by iterating
        over the remaining files in the directory based on the number of files
        selected. The files are sorted alphabetically and numerically. The
        files will be concatenated until no more files are left in the parent
        directory.
        """
        # get total number of sets of files in the directory
        parent_dir = self._files.value[0].parent
        total_num_files = len(list(parent_dir.glob(f'*{self._files.value[0].suffix}')))
        num_files = self._files.value.__len__()
        num_file_sets = total_num_files // num_files

        # check if channel names and scale are different than in the first file
        # if so, turn off the update options
        first_image = nImage(self._files.value[0])
        if first_image.channel_names != self._channel_names.value:
            self._update_channel_names.value = False
        if first_image.physical_pixel_sizes != self.p_sizes:
            self._update_scale.value = False


        # save first set of files
        self.save_files_as_ome_tiff()
        # iterate through the remaining sets of files in the directory
        for _ in range(num_file_sets):
            self.select_next_images()
            self.save_files_as_ome_tiff()

        self._results.value = (
            'Batch concatenated files in directory.'
            f'\nAt {time.strftime("%H:%M:%S")}'
        )

    def save_scenes_ome_tiff(self) -> None:
        """
        Save selected scenes as OME-TIFF.

        This method is intended to save scenes from a single file. The scenes
        are extracted based on the scenes_to_extract widget value, which is a
        list of scene indices. If the widget is left blank, then all scenes
        will be extracted.

        """
        img = nImage(self._files.value[0])

        scenes = self._scenes_to_extract.value
        scenes_list = ast.literal_eval(scenes) if scenes else img.scenes
        save_dir = self._determine_save_directory('ExtractedScenes')
        save_directory = self._save_directory.value / save_dir
        save_directory.mkdir(parents=False, exist_ok=True)

        for scene in scenes_list:
            # TODO: fix this to not have an issue if there are identical scenes
            # presented as strings, though the asssumption is most times the
            # user will input a list of integers.
            img.set_scene(scene)

            base_save_name = self._save_name.value.split('.')[0]
            image_id = helpers.create_id_string(img, base_save_name)

            img_save_name = f'{image_id}.tiff'
            img_save_loc = save_directory / img_save_name

            # get channel names from widget if truthy
            cnames = self._channel_names.value
            channel_names = ast.literal_eval(cnames) if cnames else None

            self._common_save_logic(
                data=img.data,
                uri=img_save_loc,
                dim_order='TCZYX',
                channel_names=channel_names,
                image_name=image_id,
                result_str=f'Scene: {img.current_scene}',
            )

        self._results.value = (
            f'Saved extracted scenes: {scenes_list}'
            f'\nAt {time.strftime("%H:%M:%S")}'
        )
        return

    def save_layers_as_ome_tiff(self) -> np.ndarray:
        """
        Save the selected layers as OME-TIFF.

        Determines types of layers and saves to corresponding directories.
        """
        layer_data = self.concatenate_layers(
            list(self._viewer.layers.selection)
        )
        # get the types of layers, to know where to save the image
        layer_types = [
            type(layer).__name__ for layer in self._viewer.layers.selection
        ]

        # if there are multiple layer types, save to Layers directory
        layer_save_type = 'Layers' if len(set(layer_types)) > 1 else layer_types[0]
        layer_save_dir = self._determine_save_directory(layer_save_type)
        layer_save_name = f'{self._save_name.value}.tiff'
        layer_save_loc = self._get_save_loc(
            self._save_directory.value, layer_save_dir, layer_save_name
        )

        # only get channel names if layer_save_type is not shapes or labels layer
        if layer_save_type not in ['Shapes', 'Labels']:
            cnames = self._channel_names.value
            channel_names = ast.literal_eval(cnames) if cnames else None
        else:
            channel_names = [layer_save_type]

        if layer_save_type == 'Shapes':
            layer_data = layer_data.astype(np.int16)

        elif layer_save_type == 'Labels':
            if layer_data.max() > 65535:
                layer_data = layer_data.astype(np.int32)
            else:
                layer_data = layer_data.astype(np.int16)

        self._common_save_logic(
            data=layer_data,
            uri=layer_save_loc,
            dim_order='TCZYX',
            channel_names=channel_names,
            image_name=self._save_name.value,
            result_str=layer_save_type,
        )

        return layer_data

p_sizes property #

p_sizes

Get the physical pixel sizes.

Returns:

  • PhysicalPixelSizes

    The physical pixel sizes.

__init__ #

__init__(viewer=None)

Initialize the UtilitiesContainer widget.

Parameters:

  • viewer #

    (Viewer, default: None ) –

    The napari viewer instance.

Source code in src/napari_ndev/widgets/_utilities_container.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def __init__(self, viewer: napari.viewer.Viewer = None):
    """
    Initialize the UtilitiesContainer widget.

    Parameters
    ----------
    viewer : napari.viewer.Viewer, optional
        The napari viewer instance.

    """
    super().__init__(labels=False)

    self.min_width = 500 # TODO: remove this hardcoded value
    self._viewer = viewer if viewer is not None else None
    self._squeezed_dims = None

    self._init_widgets()
    self._init_save_name_container()
    self._init_file_options_container()
    self._init_open_image_container()
    self._init_metadata_container()
    self._init_concatenate_files_container()
    self._init_save_layers_container()
    self._init_scene_container()
    # self._init_figure_options_container() # TODO: add figure saving
    self._init_layout()
    self._connect_events()

append_scene_to_name #

append_scene_to_name()

Append the scene to the save name.

Source code in src/napari_ndev/widgets/_utilities_container.py
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
def append_scene_to_name(self):
    """Append the scene to the save name."""
    if self._viewer.layers.selection.active is not None:
        try:
            img = self._viewer.layers.selection.active.metadata['bioimage']
            # remove bad characters from scene name
            scene = re.sub(r'[^\w\s]', '-', img.current_scene)
            self._save_name.value = f'{self._save_name.value}_{scene}'
        except AttributeError:
            self._results.value = (
                'Tried to append scene to name, but layer not opened with'
                ' neuralDev reader.'
            )
    else:
        self._results.value = (
            'Tried to append scene to name, but no layer selected.'
            ' So the first scene from the first file will be appended.'
        )
        img = nImage(self._files.value[0])
        scene = re.sub(r'[^\w\s]', '-', img.current_scene)
        self._save_name.value = f'{self._save_name.value}_{scene}'

batch_concatenate_files #

batch_concatenate_files()

Concatenate files in the selected directory.

Save the concatenated files as OME-TIFF, then select the next set of files in the directory to be concatenated. This is done by iterating over the remaining files in the directory based on the number of files selected. The files are sorted alphabetically and numerically. The files will be concatenated until no more files are left in the parent directory.

Source code in src/napari_ndev/widgets/_utilities_container.py
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
def batch_concatenate_files(self) -> None:
    """
    Concatenate files in the selected directory.

    Save the concatenated files as OME-TIFF, then select the next set of
    files in the directory to be concatenated. This is done by iterating
    over the remaining files in the directory based on the number of files
    selected. The files are sorted alphabetically and numerically. The
    files will be concatenated until no more files are left in the parent
    directory.
    """
    # get total number of sets of files in the directory
    parent_dir = self._files.value[0].parent
    total_num_files = len(list(parent_dir.glob(f'*{self._files.value[0].suffix}')))
    num_files = self._files.value.__len__()
    num_file_sets = total_num_files // num_files

    # check if channel names and scale are different than in the first file
    # if so, turn off the update options
    first_image = nImage(self._files.value[0])
    if first_image.channel_names != self._channel_names.value:
        self._update_channel_names.value = False
    if first_image.physical_pixel_sizes != self.p_sizes:
        self._update_scale.value = False


    # save first set of files
    self.save_files_as_ome_tiff()
    # iterate through the remaining sets of files in the directory
    for _ in range(num_file_sets):
        self.select_next_images()
        self.save_files_as_ome_tiff()

    self._results.value = (
        'Batch concatenated files in directory.'
        f'\nAt {time.strftime("%H:%M:%S")}'
    )

concatenate_files #

concatenate_files(files)

Concatenate the image data from the selected files.

Removes "empty" channels, which are channels with no values above 0. This is present in some microscope formats where it will image in RGB, and then leave empty channels not represented by the color channels.

Does not currently handle scenes.

Parameters:

  • files #

    (str or Path or list of str or Path) –

    The file(s) to concatenate.

Returns:

  • ndarray

    The concatenated image data.

Source code in src/napari_ndev/widgets/_utilities_container.py
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
def concatenate_files(
    self,
    files: str | Path | list[str | Path],
) -> np.ndarray:
    """
    Concatenate the image data from the selected files.

    Removes "empty" channels, which are channels with no values above 0.
    This is present in some microscope formats where it will image in RGB,
    and then leave empty channels not represented by the color channels.

    Does not currently handle scenes.

    Parameters
    ----------
    files : str or Path or list of str or Path
        The file(s) to concatenate.

    Returns
    -------
    numpy.ndarray
        The concatenated image data.

    """
    array_list = []

    for file in files:
        img = nImage(file)

        if 'S' in img.dims.order:
            img_data = img.get_image_data('TSZYX')
        else:
            img_data = img.data

        # iterate over all channels and only keep if not blank
        for idx in range(img_data.shape[1]):
            array = img_data[:, [idx], :, :, :]
            if array.max() > 0:
                array_list.append(array)
    return np.concatenate(array_list, axis=1)

concatenate_layers #

concatenate_layers(layers)

Concatenate the image data from the selected layers.

Adapts all layers to 5D arrays for compatibility with image dims. If the layer is a shapes layer, it will look for a corresponding image layer to get the dimensions for the shapes layer.

Parameters:

  • layers #

    (napari.layers.Image or list of napari.layers.Image) –

    The selected image layers.

Returns:

  • ndarray

    The concatenated image data.

Source code in src/napari_ndev/widgets/_utilities_container.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
def concatenate_layers(
    self,
    layers: Layer | list[Layer],
) -> np.ndarray:
    """
    Concatenate the image data from the selected layers.

    Adapts all layers to 5D arrays for compatibility with image dims.
    If the layer is a shapes layer, it will look for a corresponding image
    layer to get the dimensions for the shapes layer.

    Parameters
    ----------
    layers : napari.layers.Image or list of napari.layers.Image
        The selected image layers.

    Returns
    -------
    numpy.ndarray
        The concatenated image data.

    """
    if any(isinstance(layer, ShapesLayer) for layer in layers):
        label_dim = self._get_dims_for_shape_layer(layers)

    array_list = []

    for layer in layers:
        if isinstance(layer, ShapesLayer):
            layer_data = layer.to_labels(labels_shape=label_dim)
            layer_data = layer_data.astype(np.int16)
        else:
            layer_data = layer.data

        # convert to 5D array for compatability with image dims
        while len(layer_data.shape) < 5:
            layer_data = np.expand_dims(layer_data, axis=0)
        array_list.append(layer_data)

    return np.concatenate(array_list, axis=1)

open_images #

open_images()

Open the selected images in the napari viewer with napari-ndev.

Source code in src/napari_ndev/widgets/_utilities_container.py
537
538
539
def open_images(self):
    """Open the selected images in the napari viewer with napari-ndev."""
    self._viewer.open(self._files.value, plugin='napari-ndev')

rescale_by #

rescale_by()

Rescale the selected layers based on the given scale.

Source code in src/napari_ndev/widgets/_utilities_container.py
585
586
587
588
589
590
591
592
593
594
def rescale_by(self):
    """Rescale the selected layers based on the given scale."""
    layers = self._viewer.layers.selection
    scale_tup = self._scale_tuple.value

    for layer in layers:
        scale_len = len(layer.scale)
        # get the scale_tup from the back of the tuple first, in case dims
        # are missing in the new layer
        layer.scale = scale_tup[-scale_len:]

save_files_as_ome_tiff #

save_files_as_ome_tiff()

Save the selected files as OME-TIFF using BioImage.

Source code in src/napari_ndev/widgets/_utilities_container.py
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
def save_files_as_ome_tiff(self) -> np.ndarray:
    """Save the selected files as OME-TIFF using BioImage."""
    img_data = self.concatenate_files(self._files.value)
    save_dir = self._determine_save_directory('ConcatenatedImages')
    img_save_name = f'{self._save_name.value}.tiff'
    img_save_loc = self._get_save_loc(
        self._save_directory.value,
        save_dir,
        img_save_name,
    )

    cnames = self._channel_names.value
    channel_names = ast.literal_eval(cnames) if cnames else None

    self._common_save_logic(
        data=img_data,
        uri=img_save_loc,
        dim_order='TCZYX',
        channel_names=channel_names,
        image_name=self._save_name.value,
        result_str='Concatenated Image',
    )

    return img_data

save_layers_as_ome_tiff #

save_layers_as_ome_tiff()

Save the selected layers as OME-TIFF.

Determines types of layers and saves to corresponding directories.

Source code in src/napari_ndev/widgets/_utilities_container.py
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
def save_layers_as_ome_tiff(self) -> np.ndarray:
    """
    Save the selected layers as OME-TIFF.

    Determines types of layers and saves to corresponding directories.
    """
    layer_data = self.concatenate_layers(
        list(self._viewer.layers.selection)
    )
    # get the types of layers, to know where to save the image
    layer_types = [
        type(layer).__name__ for layer in self._viewer.layers.selection
    ]

    # if there are multiple layer types, save to Layers directory
    layer_save_type = 'Layers' if len(set(layer_types)) > 1 else layer_types[0]
    layer_save_dir = self._determine_save_directory(layer_save_type)
    layer_save_name = f'{self._save_name.value}.tiff'
    layer_save_loc = self._get_save_loc(
        self._save_directory.value, layer_save_dir, layer_save_name
    )

    # only get channel names if layer_save_type is not shapes or labels layer
    if layer_save_type not in ['Shapes', 'Labels']:
        cnames = self._channel_names.value
        channel_names = ast.literal_eval(cnames) if cnames else None
    else:
        channel_names = [layer_save_type]

    if layer_save_type == 'Shapes':
        layer_data = layer_data.astype(np.int16)

    elif layer_save_type == 'Labels':
        if layer_data.max() > 65535:
            layer_data = layer_data.astype(np.int32)
        else:
            layer_data = layer_data.astype(np.int16)

    self._common_save_logic(
        data=layer_data,
        uri=layer_save_loc,
        dim_order='TCZYX',
        channel_names=channel_names,
        image_name=self._save_name.value,
        result_str=layer_save_type,
    )

    return layer_data

save_scenes_ome_tiff #

save_scenes_ome_tiff()

Save selected scenes as OME-TIFF.

This method is intended to save scenes from a single file. The scenes are extracted based on the scenes_to_extract widget value, which is a list of scene indices. If the widget is left blank, then all scenes will be extracted.

Source code in src/napari_ndev/widgets/_utilities_container.py
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
def save_scenes_ome_tiff(self) -> None:
    """
    Save selected scenes as OME-TIFF.

    This method is intended to save scenes from a single file. The scenes
    are extracted based on the scenes_to_extract widget value, which is a
    list of scene indices. If the widget is left blank, then all scenes
    will be extracted.

    """
    img = nImage(self._files.value[0])

    scenes = self._scenes_to_extract.value
    scenes_list = ast.literal_eval(scenes) if scenes else img.scenes
    save_dir = self._determine_save_directory('ExtractedScenes')
    save_directory = self._save_directory.value / save_dir
    save_directory.mkdir(parents=False, exist_ok=True)

    for scene in scenes_list:
        # TODO: fix this to not have an issue if there are identical scenes
        # presented as strings, though the asssumption is most times the
        # user will input a list of integers.
        img.set_scene(scene)

        base_save_name = self._save_name.value.split('.')[0]
        image_id = helpers.create_id_string(img, base_save_name)

        img_save_name = f'{image_id}.tiff'
        img_save_loc = save_directory / img_save_name

        # get channel names from widget if truthy
        cnames = self._channel_names.value
        channel_names = ast.literal_eval(cnames) if cnames else None

        self._common_save_logic(
            data=img.data,
            uri=img_save_loc,
            dim_order='TCZYX',
            channel_names=channel_names,
            image_name=image_id,
            result_str=f'Scene: {img.current_scene}',
        )

    self._results.value = (
        f'Saved extracted scenes: {scenes_list}'
        f'\nAt {time.strftime("%H:%M:%S")}'
    )
    return

update_metadata_from_layer #

update_metadata_from_layer()

Update metadata from the selected layer.

Expects images to be opened with napari-ndev reader.

Note:

This should also support napari-bioio in the future, when released.

Source code in src/napari_ndev/widgets/_utilities_container.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def update_metadata_from_layer(self):
    """
    Update metadata from the selected layer.

    Expects images to be opened with napari-ndev reader.

    Note:
    ----
    This should also support napari-bioio in the future, when released.

    """
    selected_layer = self._viewer.layers.selection.active
    try:
        img = selected_layer.metadata['bioimage']
        self._update_metadata_from_Image(img)

    except AttributeError:
        self._results.value = (
            'Tried to update metadata, but no layer selected.'
            f'\nAt {time.strftime("%H:%M:%S")}'
        )
    except KeyError:
        scale = selected_layer.scale
        self._scale_tuple.value = (
            scale[-3] if len(scale) >= 3 else 1,
            scale[-2],
            scale[-1],
        )
        self._results.value = (
            'Tried to update metadata, but could only update scale'
            ' because layer not opened with neuralDev reader.'
            f'\nAt {time.strftime("%H:%M:%S")}'
        )

update_metadata_on_file_select #

update_metadata_on_file_select()

Update self._save_name.value and metadata if selected.

Source code in src/napari_ndev/widgets/_utilities_container.py
466
467
468
469
470
471
472
473
474
475
476
def update_metadata_on_file_select(self):
    """Update self._save_name.value and metadata if selected."""
    # TODO: get true stem of file, in case .ome.tiff
    self._save_name.value = str(self._files.value[0].stem)
    img = nImage(self._files.value[0])

    self._update_metadata_from_Image(
        img,
        update_channel_names=self._update_channel_names.value,
        update_scale=self._update_scale.value,
    )